RNA Arbitrarily Primed PCR Survey of Genes Regulated by ToxR in the Deep-Sea Bacterium Photobacterium profundum Strain SS9

Author:

Bidle Kelly A.1,Bartlett Douglas H.1

Affiliation:

1. Marine Biology Research Division, Scripps Institution of Oceanography, La Jolla, California 92093-0202

Abstract

ABSTRACT We are currently investigating the role of ToxR-mediated gene regulation in Photobacterium profundum strain SS9. SS9 is a moderately piezophilic (“pressure loving”) psychrotolerant marine bacterium belonging to the family Vibrionaceae . In Vibrio cholerae , ToxR is a transmembrane DNA binding protein involved in mediating virulence gene expression in response to various environmental signals. A homolog to V. cholerae ToxR that is necessary for pressure-responsive gene expression of two outer membrane protein-encoding genes was previously found in SS9. To search for additional genes regulated by ToxR in SS9, we have used RNA arbitrarily primed PCR (RAP-PCR) with wild-type and toxR mutant strains of SS9. Seven ToxR-activated transcripts and one ToxR-repressed transcript were identified in this analysis. The cDNAs corresponding to these partial transcripts were cloned and sequenced, and ToxR regulation of their genes was verified. The products of these genes are all predicted to fall into one or both of two functional categories, those whose products alter membrane structure and/or those that are part of a starvation response. The transcript levels of all eight newly identified genes were also characterized as a function of hydrostatic pressure. Various patterns of pressure regulation were observed, indicating that ToxR activation or repression cannot be used to predict the influence of pressure on gene expression in SS9. These results provide further information on the nature of the ToxR regulon in SS9 and indicate that RAP-PCR is a useful approach for the discovery of new genes under the control of global regulatory transcription factors.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3