Author:
Jinks D C,Silvius J R,McElhaney R N
Abstract
The membrane-bound adenosine triphosphatase (ATPase) activity of Acholeplasma laidlawii B differs in many respects from the common (Mg2+, Ca2+)-ATPase activity of higher bacteria, most notably in that it is specifically activated by Mg2+ and strongly and specifically stimulated by Na+ (or Li+). Various inhibitors diminish the ATPase activity with a concentration dependence which suggests that a single enzyme species is responsible for all of the observed ATP hydrolytic activity (both basal and Na+ stimulated). The Km for ATP is influenced by temperature but not by membrane lipid fatty acid composition. Vmax is influenced by both of these factors, showing a break in Arrhenius plots which falls below the lipid phase transition midpoint but well above the lower boundary when a phase transition occurs within the temperature range studied. The apparent energy of activation for Vmax is strongly influenced by lipid fatty acid composition both above and below the break. When whole cells of A. laidlawii B are incubated in KCl or NaCl buffers, they rapidly swell and lyse if deprived of an energy source or treated with ATPase inhibitors at concentrations which significantly inhibit enzyme activity in isolated membranes, whereas in sucrose or MgSO4 buffers of equal osmolarity, the cells are stable under these conditions. These results suggest that the membrane ATPase of A. laidlawii B is intimately associated with the membrane lipids and that it functions as a monovalent cation pump which regulates intracellular osmolarity as the (Na+, K+)-ATPase does in eucaryotes.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献