Energy Supply for Active Transport in Anaerobically Grown Escherichia coli

Author:

Boonstra Johannes1,Downie J. Allan2,Konings Wil N.1

Affiliation:

1. Department of Microbiology, Biological Centre, 9751 NN Haren, The Netherlands

2. Department of Biochemistry, John Curtin School of Medical Research, Australian National University, Canberra A.C.T., Australia

Abstract

Escherichia coli K-12, grown under anaerobic conditions with glucose as the sole source of carbon and energy without any terminal electron acceptor added, contains a fumarate reductase system in which electrons are transferred from formate or reduced nicotinamide adenine dinucleotide via menaquinone and cytochromes to fumarate reductase. This fumarate reductase system plays an important role in the metabolic energy supply of E. coli , grown under so-called “glycolytic conditions,” as is indicated by the growth yields and maximal growth rates of mutants impaired in electron transfer or adenosine triphosphatase ( uncB ). In mutants deficient in menaquinone, cytochromes, or fumarate reductase, these values are considerably lower than in mutants deficient in ubiquinone or a functional adenosine triphosphatase. Electron transfer in this fumarate reductase system leads to the generation of a membrane potential, as is indicated by the uptake of the lipophilic cation triphenylmethylphosphonium by membrane vesicles prepared from cytochrome-sufficient and uncB cells. The generation of a proton-motive force by the fumarate reductase system was also demonstrated by the uptake of amino acids under anaerobic conditions in membrane vesicles of cytochrome containing and uncB cells grown under glycolytic conditions. Membrane vesicles of cytochrome-deficient cells failed to accumulate triphenyl-methylphosphonium and amino acids under these conditions, indicating that cytochromes are essential for the generation of a proton-motive force. Using glutamine uptake as an indication of the generation of ATP and proline uptake as an indication of the generation of a proton-motive force, it was demonstrated in whole cells that the proton-motive force is formed by ATP hydrolysis in cytochrome-deficient cells and by electron transfer in the uncB cells. In cytochrome-containing cells it was not possible to distinguish between these two possibilities, but the growth parameters suggest that, under glycolytic conditions, the proton-motive force is generated via electron transfer in the fumarate reductase system rather than via ATP hydrolysis.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3