Involvement of Raft-Like Plasma Membrane Domains of Entamoeba histolytica in Pinocytosis and Adhesion

Author:

Laughlin Richard C.1,McGugan Glen C.2,Powell Rhonda R.2,Welter Brenda H.2,Temesvari Lesly A.2

Affiliation:

1. Department of Genetics and Biochemistry

2. Department of Biological Sciences, Clemson University, Clemson, South Carolina

Abstract

ABSTRACT Lipid rafts are highly ordered, cholesterol-rich, and detergent-resistant microdomains found in the plasma membrane of many eukaryotic cells. These domains play important roles in endocytosis, secretion, and adhesion in a variety of cell types. The parasitic protozoan Entamoeba histolytica , the causative agent of amoebic dysentery, was determined to have raft-like plasma membrane domains by use of fluorescent lipid analogs that specifically partition into raft and nonraft regions of the membrane. Disruption of raft-like membrane domains in Entamoeba with the cholesterol-binding agents filipin and methyl-β-cyclodextrin resulted in the inhibition of several important virulence functions, fluid-phase pinocytosis, and adhesion to host cell monolayers. However, disruption of raft-like domains did not inhibit constitutive secretion of cysteine proteases, another important virulence function of Entamoeba . Flotation of the cold Triton X-100-insoluble portion of membranes on sucrose gradients revealed that the heavy, intermediate, and light subunits of the galactose- N -acetylgalactosamine-inhibitible lectin, an important cell surface adhesion molecule of Entamoeba , were enriched in cholesterol-rich (raft-like) fractions, whereas EhCP5, another cell surface molecule, was not enriched in these fractions. The subunits of the lectin were also observed in high-density, actin-rich fractions of the sucrose gradient. Together, these data suggest that pinocytosis and adhesion are raft-dependent functions in this pathogen. This is the first report describing the existence and physiological relevance of raft-like membrane domains in E. histolytica .

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3