Abstract
ABSTRACTAzole resistance is an emerging problem inAspergillus fumigatuswhich translates into treatment failure. Alternative treatments with new azoles may improve therapeutic outcome in invasive aspergillosis (IA) even for strains with decreased susceptibility to current azoles. Thein vivoefficacy of 0.25, 1, 4, 16, 64, 128, 256, and 512 mg/kg of body weight/day prodrug isavuconazonium sulfate (BAL8557) (isavuconazole [ISA]-equivalent doses of 0.12, 0.48, 1.92, 7.68, 30.7, 61.4, 122.9, and 245.8 mg/kg/day, respectively) administered by oral gavage was assessed in an immunocompetent murine model of IA against four clinicalA. fumigatusisolates: a wild-type isolate (ISA MICEUCAST, 0.5 mg/liter) and three azole-resistant isolates harboring substitutions in thecyp51Agene: G54W (ISA MICEUCAST, 0.5 mg/liter), M220I (ISA MICEUCAST, 4 mg/liter), and TR34/L98H (ISA MICEUCAST, 8 mg/liter). The maximum effect (100% survival) was reached at a prodrug isavuconazonium sulfate dose of 64 mg/kg for the wild-type isolate, 128 mg/kg for the G54W mutant, and 256 mg/kg two times per day (q12) for the M220I mutant. A maximum response was not achieved with the TR34/L98H isolates with the highest dose of prodrug isavuconazonium sulfate (256 mg/kg q12). For a survival rate of 50%, the effective AUC0–24/MICEUCASTratio for ISA total drug was 24.73 (95% confidence interval, 22.50 to 27.18). The efficacy of isavuconazole depended on both the drug exposure and the isavuconazole MIC of the isolates. The quantitative relationship between exposure and effect (AUC0–24/MIC) can be used to optimize the treatment of human infections byA. fumigatus, including strains with decreased susceptibility.
Publisher
American Society for Microbiology
Subject
Infectious Diseases,Pharmacology (medical),Pharmacology
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献