Identification of a promoter-specific transactivation domain in the herpes simplex virus regulatory protein ICP4

Author:

Xiao W1,Pizer L I1,Wilcox K W1

Affiliation:

1. Department of Microbiology, Medical College of Wisconsin, Milwaukee 53226, USA.

Abstract

ICP4 is expressed during the immediate-early phase of infection by herpes simplex virus (HSV) and activates transcription of viral genes during subsequent phases of productive infection. Several members of the alpha-herpesvirus family encode regulatory proteins that have extensive homology with ICP4 and exhibit a transactivation domain (TAD) at the N terminus. The portions of ICP4 required for nuclear localization, DNA binding, and dimerization have been defined, but a domain that is specifically required for transactivation has not been identified. We have defined a promoter-specific ICP4 TAD by analysis of the activity of GAL4-ICP4 fusion proteins cotransfected into HeLa cells with a luciferase reporter gene linked to a promoter with five GAL4 binding sites. The transactivation activity of GAL4-ICP4 hybrids is located entirely within the first 139 residues of ICP4 and is significantly less potent than the activity of GAL4-TAD hybrids derived from ICP4 homologs. ICP4 residues 97 to 109 are a critical component of this N-terminal TAD. Transient transfection assays performed with nonfusion forms of ICP4 and luciferase genes linked to the HSV glycoprotein D (gD) or thymidine kinase (tk) promoter revealed that ICP4 residues 97 to 109 are required for induction of the gD promoter but are not required for induction of the tk promoter. Comparative experiments with ICP4 homologs revealed that the pseudorabies virus TAD is a potent activator of the gD promoter and a weak activator of the tk promoter. Complementation assays revealed that loss of ICP4 residues 97 to 109 reduced the yield of virus from infected cells nearly 500-fold compared to wild-type ICP4. We conclude that ICP4 residues 97 to 109 are a core component of a promoter-specific transactivation domain that is required for efficient replication of herpes simplex virus.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3