Affiliation:
1. Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis 46202-5120, USA.
Abstract
We have reported previously that a 636-bp fragment spanning the 5' two-thirds of the human papillomavirus type 6 (HPV6)-W50 long control region (LCR) functions as a transcriptional silencer (A. Farr, S. Pattison, B.-S. Youn, and A. Roman, J. Gen. Virol. 76:827-835, 1995). We have utilized nested deletion analyses to implicate a 66-bp sequence which appears to be critical for this activity. A comparison of the transcriptional regulatory activities of the LCRs of HPV6-W50 and HPV6b (which has a 94-bp deletion, resulting in the elimination of the 66-bp sequence) indicates that sequences within the 94-bp region negatively regulate the activity of the intact HPV6 LCR. Two sequence-specific DNA-protein interactions were visualized via electrophoretic mobility shift assays. One of the binding events is mediated by the transcriptional repressor CCAAT displacement protein (CDP), a factor which is active in undifferentiated cells but inactive in terminally differentiated cells. This conclusion is based on the following three lines of evidence: (i) a consensus CDP binding site oligonucleotide serves as a competitor in band shift assays, (ii) the band shift complex is not seen when a CDP-negative nuclear extract is used, and (iii) anti-CDP antiserum specifically inhibits the binding. These studies identify a DNA-protein interaction occurring within the 5' end of the LCR which may be important in maintaining the tight link between keratinocyte differentiation and HPV gene expression.
Publisher
American Society for Microbiology
Subject
Virology,Insect Science,Immunology,Microbiology
Cited by
55 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献