The Haemophilus influenzae adenylate cyclase gene: cloning, sequence, and essential role in competence

Author:

Dorocicz I R1,Williams P M1,Redfield R J1

Affiliation:

1. Department of Biochemistry, University of British Columbia, Vancouver, Canada.

Abstract

Competence for transformation in Haemophilus influenzae is stimulated by cyclic AMP (cAMP) and requires the cAMP-dependent catabolite regulatory protein CRP. Thus, understanding the control of competence will require understanding how cAMP levels are regulated. As a first step, we have cloned the H. influenzae adenylate cyclase gene (cya) by complementing the Lac- phenotype of delta cya Escherichia coli. Its sequence specifies an 843-amino-acid protein which has significant identity to other known bacterial adenylate cyclases (41 to 43% and 61% identical to the cya genes of enteric bacteria and of Pasteurella multocida, respectively). As seen in other bacterial cya genes, there is evidence for regulation similar to that demonstrated for E. coli: the presence of a strong consensus CRP binding site within the promoter of the gene may provide feedback control of cAMP levels by repressing cya transcription, and translation may be limited by the weak ribosome binding site and by initiation of protein synthesis with GUG rather than AUG or the UUG used in other bacterial cya genes. We confirmed the essential role of cAMP in competence by constructing and characterizing H. influenzae cya mutants. This strain failed to develop competence either spontaneously or after transfer to a competence-inducing medium. However, it became as competent as its wild-type parent in the presence of exogenous cAMP. This result suggests that the failure of exogenously added cAMP to induce optimum competence in wild-type cells is not due to a limitation to the entry of cAMP into the cells. Rather, it strongly favors models in which competence induction requires both an increase in intracellular cAMP and a second as yet unidentified regulatory event. H. influenzae strains mutant in cya or crp were unable to ferment xylose or ribose. This confirms that influenzae, like E. coli, uses cAMP and CRP to regulate nutrient uptake and utilization and lends increasing support to the hypothesis that DNA uptake is mechanism of nutrient acquisition.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference44 articles.

1. The complete nucleotide sequence of the adenylate cyclase gene of Escherichia coli;Aiba H.;Nucleic Acids Res.,1984

2. Determination of inherited traits of H. influenzae by desoxyribonucleic acid fractions isolated from type-specific cells;Alexander H.;J. Exp. Med.,1951

3. Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III;Avery 0.;J. Exp. Med.,1944

4. Genetic systems in Haemophilus influenzae;Barcak G. J.;Methods Enzymol.,1991

5. Breakage of parental DNA strands in Haemophilus influenzae by 313 nm radiation after replication in the presence of 5-bromodeoxyuridine;Beattie K. L.;Biophys. J.,1972

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3