devRS, an autoregulated and essential genetic locus for fruiting body development in Myxococcus xanthus

Author:

Thöny-Meyer L1,Kaiser D1

Affiliation:

1. Department of Biochemistry, Stanford University School of Medicine, California 94305-5427.

Abstract

Two Tn5 lac insertions into the Myxococcus genome at sites omega 4414 and omega 4473, which are separated by 550 nucleotides, inactivate fruiting body development. Sporulation is decreased 100- to 10,000-fold. At least two genes, devR and devS, are transcribed in this region, probably as an operon. Expression of devR begins by 6 h after starvation has initiated development. On the basis of their nucleotide sequences, devR and devS are expected to encode proteins of 302 and 214 amino acids, respectively. Dev+ function can be restored by a segment of 7.8 kb cloned from the devRS region of wild-type cells. Two experiments show that devR expression is under strong negative autoregulation. beta-Galactosidase is expressed at a higher level from a transcriptional devR::lacZ fusion when the fused operon is in a dev strain than when it is in the dev/dev+ genetic background of a partial diploid. There is more mRNA accumulation from the devRS region in the dev strain than in a rescued dev/dev+ tandem duplication strain. Sporulation rescue is correlated with some degree of negative autoregulation, even though sporulation is not inversely proportional to beta-galactosidase expression from omega 4414. A second level of regulation is suggested by complementation of dev by dev+ in duplication strains. The expression of devRS, measured by sporulation levels, differs 1,000-fold when devRS+ is moved from a distance of 20 kb to 3 Mb from the mutant devRS locus. Expression of devR is also dependent on the cell density at which development is initiated, a third level of regulation. Multiple levels of regulation suggest that devRS is a switch required to activate completion of aggregation and sporulation.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3