Two global regulatory systems (Crp and Arc) control the cobalamin/propanediol regulon of Salmonella typhimurium

Author:

Ailion M1,Bobik T A1,Roth J R1

Affiliation:

1. Biology Department, University of Utah, Salt Lake City 84112.

Abstract

The genes for cobalamin (vitamin B12) biosynthesis (cob) are coregulated with genes for degradation of propanediol (pdu). Both the cob and pdu operons are induced by propanediol by means of a positive regulatory protein, PocR. This coregulation of a synthetic and a degradative pathway reflects the fact that vitamin B12 is a required cofactor for the first enzyme in propanediol breakdown. The cob/pdu regulon is induced by propanediol under two sets of growth conditions, i.e., during aerobic respiration of a poor carbon source and during anaerobic growth. We provide evidence that, under aerobic conditions, the Crp/cyclic AMP system is needed for all induction of the pocR, cob, and pdu genes. Anaerobically, the Crp/cyclic AMP and ArcA/ArcB systems act additively to support induction of the same three transcription units. The fact that these global control systems affect expression of the gene for the positive regulatory protein (pocR) as well as the pdu and cob operons is consistent with our previous suggestion that these two global controls may act directly only on the pocR gene; their control over the cob and pdu operons may be an indirect consequence of their effect on the level of PocR activator protein. The reported experiments were made possible by the observation that pyruvate supports aerobic growth of all of the mutants tested (cya, crp, arcA, and arcB); pyruvate also supports anaerobic growth of these mutants if the alternative electron acceptor, fumarate, is provided. By using pyruvate as a carbon source, it was possible to grow all of these mutant strains under identical conditions and compare their expression of the cob/pdu regulon. The role of Crp in control of vitamin B12 synthesis suggests that the major role of vitamin B12 in Salmonella spp. is in catabolism of carbon sources; the coregulation of the cob and pdu operons suggests that propanediol is the major vitamin B12-dependent carbon source.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3