Mutation at the Polymerase Active Site of Mouse DNA Polymerase δ Increases Genomic Instability and Accelerates Tumorigenesis

Author:

Venkatesan Ranga N.1,Treuting Piper M.2,Fuller Evan D.1,Goldsby Robert E.3,Norwood Thomas H.1,Gooley Ted A.4,Ladiges Warren C.2,Preston Bradley D.1,Loeb Lawrence A.1

Affiliation:

1. Departments of Pathology

2. Comparative Medicine, University of Washington, Seattle, Washington 98195

3. Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of California, San Francisco, California 94143-0106

4. Fred Hutchinson Cancer Research Center, Clinical Research Division, D5-360, Seattle, Washington 98109

Abstract

ABSTRACT Mammalian DNA polymerase δ (Pol δ) is believed to replicate a large portion of the genome and to synthesize DNA in DNA repair and genetic recombination pathways. The effects of mutation in the polymerase domain of this essential enzyme are unknown. Here, we generated mice harboring an L604G or L604K substitution in highly conserved motif A in the polymerase active site of Pol δ. Homozygous Pold1 L604G/L604G and Pold1 L604K/L604K mice died in utero. However, heterozygous animals were viable and displayed no overall increase in disease incidence, indicative of efficient compensation for the defective mutant polymerase. The life spans of wild-type and heterozygous Pold1 +/L604G mice did not differ, while that of Pold1 +/L604K mice was reduced by 18%. Cultured embryonic fibroblasts from the heterozygous strains exhibited comparable increases in both spontaneous mutation rate and chromosome aberrations. We observed no significant increase in cancer incidence; however, Pold1 +/L604K mice bearing histologically diagnosed tumors died at a younger median age than wild-type mice. Our results indicate that heterozygous mutation at L604 in the polymerase active site of DNA polymerase δ reduces life span, increases genomic instability, and accelerates tumorigenesis in an allele-specific manner, novel findings that have implications for human cancer.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3