Neisseria gonorrhoeae Survival during Primary Human Cervical Epithelial Cell Infection Requires Nitric Oxide and Is Augmented by Progesterone

Author:

Edwards Jennifer L.1

Affiliation:

1. The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and the Department of Pediatrics, The Ohio State University, Columbus, Ohio 43205

Abstract

ABSTRACT Neisseria gonorrhoeae is an obligate human pathogen that causes gonorrhea. We have shown previously that complement receptor 3 and Akt kinase play important roles in mediating cervical infection. At present, there are limited data to indicate how hormonally induced changes to the mucosal epithelia of the female genital tract mediate the course of gonococcal disease. Hence, I have expanded upon previous work to investigate the interaction of gonococci with primary human cervical epithelial (pex) cells under the variable estrogen and progesterone concentrations likely to be encountered in vivo throughout the female menstrual cycle. My data indicated that the ability of gonococci to survive and to replicate within pex cells was increased under progesterone-predominant conditions. Using bacterial survival, immunological, and kinase assays, I show that progesterone functioned in an additive manner with gonococcal phospholipase D to augment Akt kinase activity. This, in turn, resulted in a parallel increase in nitric oxide synthase expression. Nitric oxide production by pex cells was dependent upon Akt activity and was increased under progesterone-predominant conditions. Whereas both inducible and endothelial nitric oxide synthase contributed to nitric oxide production, only inducible nitric oxide synthase activity promoted gonococcal survival within pex cells. Collectively, these data provide the first clues as to how steroid hormones potentially modulate the course of gonococcal disease in women. In addition, these data demonstrate that host-derived nitric oxide likely is not protective against gonococci, in vivo ; rather, nitric oxide may be required to sustain cervical bacterial disease.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3