Inhibition of the growth of Neisseria meningitidis by reduced ferritin and other iron-binding agents

Author:

Calver G A,Kenny C P,Kushner D J

Abstract

Serogroups of N. meningitidis were characterized as virulent or avirulent according to their capacity to establish meningococcal infection in mice. An agar plate diffusion technique demonstrated that iron had a definite growth-supporting role for both of these meningococcal types. The avirulent strains could use ionic or chelated iron as well as the virulent strains. Iron-reversible growth inhibition occurred to the same extent for both bacterial types in the presence of the synthetic iron-chelating agents Desferal and ethylenediamine-di-orthohydroxy phenylacetic acid. A difference in response was demonstrated for these bacterial types when grown in the presence of various iron-binding proteins from animal body fluids and tissues. The growth of the avirulent strain was inhibited to a greater degree by egg white conalbumin. The humoral iron-binding protein transferrin showed a significant inhibitory capacity only when used in conjunction with bicarbonate. Under conditions of increased iron saturation of this protein, the avirulent strain was inhibited to the furthest extent. In the presence of ferritin, the cellular iron-binding protein, which had been reduced, inhibition of the growth of either strain type did not occur on iron-poor media (less than 5 micrograms/100 ml). However, with the incorporation of iron into the media, the inhibitory effect of the protein became evident. As the concentration of iron increased, the inhibition increased to a certain level and subsequently declined. A substantial difference in the ability of the avirulent type to grow in the presence of reduced horse spleen ferritin was observed. For this microorganism, a correlation appears to exist between the capacity to grow by utilizing the available iron in the presence of reduced ferritin and the ability to establish infection. The host protein ferritin, in the reduced state, apart from simply being a storage protein for iron, can prevent the growth of a procaryotic organism. Our experiments suggest a role for ferritin in the prevention of emningococcal disease. A cehmotherapeutic potential for Desferal is also implied.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3