Production and Level of Genetic Stability of an Influenza A Virus Temperature-Sensitive Mutant Containing Two Genes with ts Mutations

Author:

Murphy Brian R.1,Markoff Lewis J.1,Hosier Nanette T.1,Massicot Judith G.1,Chanock Robert M.1

Affiliation:

1. Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20205

Abstract

Temperature-sensitive ( ts ) reassortant vaccine strains derived from the A/Udorn/72 ts -1A2 donor virus were not sufficiently stable genetically in humans. We therefore sought to produce a new, more stable donor virus. We had previously identified a stable ts virus with a ts P3 gene and in the current study identified another relatively stable single-lesion ts virus with a ts mutation in the NP gene. A new ts reassortant virus was constructed by mating these two single mutants and by isolating three reassortant progeny, clones 20, 53, and 55, that contained both a ts P3 and a ts NP gene. These reassortant progeny possessed a 37 to 38°C shutoff temperature and were as restricted in their replication in hamster lungs as the A/Udorn/72 ts -1A2 virus. All isolates from the lungs and nasal turbinates of hamsters were temperature sensitive. An in vitro stress test was used to determine whether the new ts P3 ts NP reassortant virus would undergo loss of its ts phenotype after replication at semipermissive temperature. Clone 20 and 55 reassortants underwent progressive loss of their ts phenotype in vitro, although at a rate slightly less than that of the A/Udorn/72 ts -1A2 virus. The level of genetic stability after replication in vivo was assessed in cyclophosphamide-treated hamsters in which virus replication continued for up to 15 days. Again, both the A/Udorn/72 ts -1A2 and the new ts P3 ts NP reassortant clone 55 manifested a progressive loss of temperature sensitivity after 7 days of replication. Clone 55 virus lost temperature sensitivity significantly less rapidly than the A/Udorn/72 ts -1A2 virus. These results indicated that, although the new ts P3 ts NP reassortant virus was more stable than the A/Udorn/72 ts -1A2 virus, it nevertheless underwent progressive loss of temperature sensitivity after replication in vitro and in vivo. Therefore, it does not appear to be a satisfactory donor virus. This experience plus that gained earlier with other ts mutants of influenza A virus suggest that influenza A virus mutants that rely solely upon their ts phenotype for attenuation are unlikely to exhibit the phenotypic stability required of a vaccine virus. Other genetic techniques are needed to produce more stable influenza A virus strains.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3