Enterococcal transposon Tn5384: evolution of a composite transposon through cointegration of enterococcal and staphylococcal plasmids

Author:

Bonafede M E1,Carias L L1,Rice L B1

Affiliation:

1. Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106, USA.

Abstract

Mechanisms for the possible transfer of antimicrobial resistance genes between staphylococci and enterococci remain poorly defined. We have previously reported the transfer between Enterococcus faecalis strains of a multiresistance chromosomal element (beta-lactamase positive and resistance to erythromycin, gentamicin, mercuric chloride, streptomycin, and tetracycline) which we have tentatively designated Tn5385. Tn5385 is a composite of several smaller transposable elements, including Tn5384, a 26-kb composite transposon conferring resistance to erythromycin, gentamicin, and mercuric chloride. Analyses of 7 kb within Tn5384 and flanking sequences within the larger element revealed sequences characteristic of staphylococcal beta-lactamase and small, mobilizable plasmids flanking a region with a sequence identical to those of the replication genes previously described for enterococcal and streptococcal broad-host-range plasmids. These diverse regions are linked by insertion sequences IS256 and IS257 in a manner which suggests a series of cointegration events as the genesis of the current relationship. Taken together, these data suggest that Tn5384 and the larger element within which it is incorporated (Tn5385) evolved at least in part as a result of cointegration between an enterococcal broad-host-range plasmid and staphylococcal beta-lactamase and small mobilizable plasmids. These results implicate broad-host-range plasmids in the transfer of resistance determinants from staphylococci to enterococci.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3