The Alpha Subunit of Eukaryotic Initiation Factor 2B (eIF2B) Is Required for eIF2-Mediated Translational Suppression of Vesicular Stomatitis Virus

Author:

Elsby Rachel1,Heiber Joshua F.1,Reid Peter2,Kimball Scot R.3,Pavitt Graham D.2,Barber Glen N.1

Affiliation:

1. Department of Cell Biology, Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, Florida 33155

2. Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom

3. Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033

Abstract

ABSTRACT Eukaryotic translation initiation factor 2B (eIF2B) is a heteropentameric guanine nucleotide exchange factor that converts protein synthesis initiation factor 2 (eIF2) from a GDP-bound form to the active eIF2-GTP complex. Cellular stress can repress translation initiation by activating kinases capable of phosphorylating the alpha subunit of eIF2 (eIF2α), which sequesters eIF2B to prevent exchange activity. Previously, we demonstrated that tumor cells are sensitive to viral replication, possibly due to the occurrence of defects in eIF2B that overcome the inhibitory effects of eIF2α phosphorylation. To extend this analysis, we have investigated the importance of eIF2Bα function and report that this subunit can functionally substitute for its counterpart, GCN3, in yeast. In addition, a variant of mammalian eIF2Bα harboring a point mutation (T41A) was able overcome translational inhibition invoked by amino acid depravation, which activates Saccharomyces cerevisiae GCN2 to phosphorylate the yeast eIF2α homolog SUI2. Significantly, we also demonstrate that the loss of eIF2Bα, or the expression of the T41A variant in mammalian cells, is sufficient to neutralize the consequences of eIF2α phosphorylation and render normal cells susceptible to virus infection. Our data emphasize the importance of eIF2Bα in mediating the eIF2 kinase translation-inhibitory activity and may provide insight into the complex nature of viral oncolysis.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3