Quantifying Vibrio cholerae Enterotoxicity in a Zebrafish Infection Model

Author:

Mitchell Kristie C.1,Breen Paul1,Britton Sarah1,Neely Melody N.1,Withey Jeffrey H.1ORCID

Affiliation:

1. Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA

Abstract

ABSTRACT Vibrio cholerae is the etiological agent of cholera, an acute intestinal infection in humans characterized by voluminous watery diarrhea. Cholera is spread through ingestion of contaminated food or water, primarily in developing countries that lack the proper infrastructure for proper water and sewage treatment. Vibrio cholerae is an aquatic bacterium that inhabits coastal and estuarine areas, and it is known to have several environmental reservoirs, including fish. Our laboratory has recently described the use of the zebrafish as a new animal model for the study of V. cholerae intestinal colonization, pathogenesis, and transmission. As early as 6 h after exposure to V. cholerae , zebrafish develop diarrhea. Prior work in our laboratory has shown that this is not due to the action of cholera toxin. We hypothesize that accessory toxins produced by V. cholerae are the cause of diarrhea in infected zebrafish. In order to assess the effects of accessory toxins in the zebrafish, it was necessary to develop a method of quantifying diarrheal volume as a measure of pathogenesis. Here, we have adapted cell density, protein, and mucin assays, along with enumeration of V. cholerae in the zebrafish intestinal tract and in the infection water, to achieve this goal. Combined, these assays should help us determine which toxins have the greatest diarrheagenic effect in fish and, consequently, which toxins may play a role in environmental transmission. IMPORTANCE Identification of the accessory toxins that cause diarrhea in zebrafish can help us understand more about the role of fish in the wild as aquatic reservoirs for V. cholerae . It is plausible that accessory toxins can act to prolong colonization and subsequent shedding of V. cholerae back into the environment, thus perpetuating and facilitating transmission during an outbreak. It is also possible that accessory toxins help to maintain low levels of intestinal colonization in fish, giving V. cholerae an advantage when environmental conditions are not optimal for survival in the water. Studies such as this one are critical because fish could be an overlooked source of cholera transmission in the environment.

Funder

HHS | National Institutes of Health

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3