AbiV, a Novel Antiphage Abortive Infection Mechanism on the Chromosome of Lactococcus lactis subsp. cremoris MG1363

Author:

Haaber Jakob1,Moineau Sylvain2,Fortier Louis-Charles2,Hammer Karin1

Affiliation:

1. Center for Systems Microbiology, DTU Biosys, Technical University of Denmark, DK-2800 Lyngby, Denmark

2. Département de biochimie et de microbiologie, Faculté des sciences et de génie, Groupe de recherche en écologie buccale, Faculté de médecine dentaire, Félix d'Hérelle Reference Center for Bacterial Viruses, Université Laval, Québec, Canada G1V 0A6

Abstract

ABSTRACT Insertional mutagenesis with pGhost9::IS S1 resulted in independent insertions in a 350-bp region of the chromosome of Lactococcus lactis subsp. cremoris MG1363 that conferred phage resistance to the integrants. The orientation and location of the insertions suggested that the phage resistance phenotype was caused by a chromosomal gene turned on by a promoter from the inserted construct. Reverse transcription-PCR analysis confirmed that there were higher levels of transcription of a downstream open reading frame (ORF) in the phage-resistant integrants than in the phage-sensitive strain L. lactis MG1363. This gene was also found to confer phage resistance to L. lactis MG1363 when it was cloned into an expression vector. A subsequent frameshift mutation in the ORF completely eliminated the phage resistance phenotype, confirming that the ORF was necessary for phage resistance. This ORF provided resistance against virulent lactococcal phages belonging to the 936 and c2 species with an efficiency of plaquing of 10 −4 , but it did not protect against members of the P335 species. A high level of expression of the ORF did not affect the cellular growth rate. Assays for phage adsorption, DNA ejection, restriction/modification activity, plaque size, phage DNA replication, and cell survival showed that the ORF encoded an abortive infection (Abi) mechanism. Sequence analysis revealed a deduced protein consisting of 201 amino acids which, in its native state, probably forms a dimer in the cytosol. Similarity searches revealed no homology to other phage resistance mechanisms, and thus, this novel Abi mechanism was designated AbiV. The mode of action of AbiV is unknown, but the activity of AbiV prevented cleavage of the replicated phage DNA of 936-like phages.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3