Formation of a hexagonal lattice structure by an R-form lipopolysaccharide of Klebsiella sp

Author:

Kato N,Ohta M,Kido N,Ito H,Naito S,Kuno T

Abstract

We extracted an R-form lipopolysaccharide (LPS) by the phenol-water method from Klebsiella sp. strain LEN-111 (O3-:KI-) and followed the changes in ultrastructure of the LPS during the extraction procedure. When the LPS was obtained from the water phase of an extract by addition of 2 volumes of 10 mM MgCI2-ethanol, it consisted of membrane pieces with a hexagonal lattice structure with a lattice constant of 14 to 15 nm. The lattice structure of the LPS was disrupted into short rods with sodium dodecyl sulfate, but the same hexagonal lattice structure was again formed by precipitation with 2 volumes of 10 mM MgCI2-ethanol. The LPS preparation after two cycles of treatment by the phenol-water method, which contained no detectable amounts of proteins, kept an unaltered ability to form the hexagonal lattice structure. Extensive treatment with pronase and extraction with chloroform did not impair the ability of the LPS preparation to form the lattice structure. When the other salts, NaCI, CaCI2 or Zn(CH3COO)2, were used for precipitation of the LPS with ethanol in place of MgCI2, the LPS did not form the hexagonal lattice structure. However, if the LPS precipitated with NaCI-ethanol was converted to the magnesium salt form after it was electrodialyzed, it formed the same hexagonal lattice structure as the LPS precipitated with MgCI2-ethanol. From these results, it was concluded that the R-form LPS has the ability of in vitro self-assembly into a hexagonal lattice structure in the presence of Mg2+ without the help of other components such as proteins and free lipids from outer membrane.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3