Purine Salvage in Two Halophilic Archaea: Characterization of Salvage Pathways and Isolation of Mutants Resistant to Purine Analogs

Author:

Stuer-Lauridsen Birgitte1,Nygaard Per1

Affiliation:

1. Department of Biological Chemistry, Institute of Molecular Biology, University of Copenhagen, DK-1307 Copenhagen K, Denmark

Abstract

ABSTRACT In exponentially growing cultures of the extreme halophile Halobacterium halobium and the moderate halophile Haloferax volcanii , growth characteristics including intracellular protein levels, RNA content, and nucleotide pool sizes were analyzed. This is the first report on pool sizes of nucleoside triphosphates, NAD, and PRPP (5-phosphoribosyl-α-1-pyrophosphate) in archaea. The presence of a number of salvage and interconversion enzymes was determined by enzymatic assays. The levels varied significantly between the two organisms. The most significant difference was the absence of GMP reductase activity in H. halobium . The metabolism of exogenous purines was investigated in growing cultures. Both purine bases and nucleosides were readily taken up and were incorporated into nucleic acids. Growth of both organisms was affected by a number of inhibitors of nucleotide synthesis. H. volcanii was more sensitive than H. halobium , and purine base analogs were more toxic than nucleoside analogs. Growth of H. volcanii was inhibited by trimethoprim and sulfathiazole, while these compounds had no effect on the growth of H. halobium . Spontaneous mutants resistant to purine analogs were isolated. The most frequent cause of resistance was a defect in purine phosphoribosyltransferase activity coupled with reduced purine uptake. A single phosphoribosyltransferase seemed to convert guanine as well as hypoxanthine to nucleoside monophosphates, and another phosphoribosyltransferase had specificity towards adenine. The differences in the metabolism of purine bases and nucleosides and the sensitivity to purine analogs between the two halobacteria were reflected in differences in purine enzyme levels. Based on our results, we conclude that purine salvage and interconversion pathways differ just as much between the two archaeal species as among archaea, bacteria, and eukarya.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3