CDP-2,3-Di -O- Geranylgeranyl- sn -Glycerol: l -Serine O -Archaetidyltransferase (Archaetidylserine Synthase) in the Methanogenic Archaeon Methanothermobacter thermautotrophicus

Author:

Morii Hiroyuki1,Koga Yosuke1

Affiliation:

1. Department of Chemistry, School of Medicine, University of Occupational and Environmental Health, Kitakyushu 807-8555, Japan

Abstract

ABSTRACT CDP-2,3-di -O- geranylgeranyl- sn -glycerol: l -serine O -archaetidyltransferase (archaetidylserine synthase) activity in cell extracts of Methanothermobacter thermautotrophicus cells was characterized. The enzyme catalyzed the formation of unsaturated archaetidylserine from CDP-unsaturated archaeol and l -serine. The identity of the reaction products was confirmed by thin-layer chromatography, fast atom bombardment-mass spectrum analysis, and chemical degradation. The enzyme showed maximal activity in the presence of 10 mM Mn 2+ and 1% Triton X-100. Among various synthetic substrate analogs, both enantiomers of CDP-unsaturated archaeols with ether-linked geranylgeranyl chains and CDP-saturated archaeol with ether-linked phytanyl chains were similarly active toward the archaetidylserine synthase. The activity on the ester analog of the substrate was two to three times higher than that on the corresponding ether-type substrate. The activity of d -serine with the enzyme was 30% of that observed for l -serine. A trace amount of an acid-labile, unsaturated archaetidylserine intermediate was detected in the cells by a pulse-labeling experiment. A gene (MT1027) in M. thermautotrophicus genome annotated as the gene encoding phosphatidylserine synthase was found to be homologous to Bacillus subtilis pssA but not to Escherichia coli pssA. The substrate specificity of phosphatidylserine synthase from B. subtilis was quite similar to that observed for the M. thermautotrophicus archaetidylserine synthase, while the E. coli enzyme had a strong preference for CDP-1,2-diacyl- sn -glycerol. It was concluded that M. thermautotrophicus archaetidylserine synthase belongs to subclass II phosphatidylserine synthase ( B. subtilis type) on the basis of not only homology but also substrate specificity and some enzymatic properties. The possibility that a gene encoding the subclass II phosphatidylserine synthase might be transferred from a bacterium to an ancestor of methanogens is discussed.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3