RNase III Processing of rRNA in the Lyme Disease Spirochete Borrelia burgdorferi

Author:

Anacker Melissa L.1,Drecktrah Dan1,LeCoultre Richard D.1,Lybecker Meghan12,Samuels D. Scott13

Affiliation:

1. Division of Biological Sciences, University of Montana, Missoula, Montana, USA

2. Department of Biology, University of Colorado, Colorado Springs, Colorado, USA

3. Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana, USA

Abstract

ABSTRACT The rRNA genes of Borrelia ( Borreliella ) burgdorferi are unusually organized; the spirochete has a single 16S rRNA gene that is more than 3 kb from a tandem pair of 23S-5S rRNA operons. We generated an rnc null mutant in B. burgdorferi that exhibits a pleiotropic phenotype, including decreased growth rate and increased cell length. Here, we demonstrate that endoribonuclease III (RNase III) is, as expected, involved in processing the 23S rRNA in B. burgdorferi . The 5′ and 3′ ends of the three rRNAs were determined in the wild type and rnc Bb mutants; the results suggest that RNase III in B. burgdorferi is required for the full maturation of the 23S rRNA but not for the 5S rRNA nor, curiously, for the 16S rRNA. IMPORTANCE Lyme disease, the most common tick-borne zoonosis in the Northern Hemisphere, is caused by the bacterium Borrelia ( Borreliella ) burgdorferi , a member of the deeply branching spirochete phylum. B. burgdorferi carries a limited suite of ribonucleases, enzymes that cleave RNA during processing and degradation. Several ribonucleases, including RNase III, are involved in the production of ribosomes, which catalyze translation and are a major target of antibiotics. This is the first study to dissect the role of an RNase in any spirochete. We demonstrate that an RNase III mutant is viable but has altered processing of rRNA.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3