The Phosphatidylinositol 4,5-Biphosphate and TORC2 Binding Proteins Slm1 and Slm2 Function in Sphingolipid Regulation

Author:

Tabuchi Mitsuaki1,Audhya Anjon1,Parsons Ainslie B.23,Boone Charles23,Emr Scott D.1

Affiliation:

1. Department of Cellular and Molecular Medicine and Howard Hughes Medical Institute, University of California, San Diego, School of Medicine, La Jolla, California 92093-0668

2. Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario, Canada

3. Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada

Abstract

ABSTRACT The Stt4 phosphatidylinositol 4-kinase has been shown to generate a pool of phosphatidylinositol 4-phosphate (PI4P) at the plasma membrane, critical for actin cytoskeleton organization and cell viability. To further understand the essential role of Stt4-mediated PI4P production, we performed a genetic screen using the stt4 ts mutation to identify candidate regulators and effectors of PI4P. From this analysis, we identified several genes that have been previously implicated in lipid metabolism. In particular, we observed synthetic lethality when both sphingolipid and PI4P synthesis were modestly diminished. Consistent with these data, we show that the previously characterized phosphoinositide effectors, Slm1 and Slm2, which regulate actin organization, are also necessary for normal sphingolipid metabolism, at least in part through regulation of the calcium/calmodulin-dependent phosphatase calcineurin, which binds directly to both proteins. Additionally, we identify Isc1, an inositol phosphosphingolipid phospholipase C, as an additional target of Slm1 and Slm2 negative regulation. Together, our data suggest that Slm1 and Slm2 define a molecular link between phosphoinositide and sphingolipid signaling and thereby regulate actin cytoskeleton organization.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3