Changes in Bacterial Populations and in Biphenyl Dioxygenase Gene Diversity in a Polychlorinated Biphenyl-Polluted Soil after Introduction of Willow Trees for Rhizoremediation

Author:

de Cárcer Daniel Aguirre1,Martín Marta1,Karlson Ulrich2,Rivilla Rafael1

Affiliation:

1. Departamento de Biología, Universidad Autónoma de Madrid, 28049 Madrid, Spain

2. National Environmental Research Institute, University of Aarhus, Roskilde, Denmark

Abstract

ABSTRACT The aim of this study was to analyze the structural and functional changes occurring in a polychlorinated-biphenyl (PCB)-contaminated soil ecosystem after the introduction of a suitable host plant for rhizoremediation ( Salix viminalis ). We have studied the populations and phylogenetic distribution of key bacterial groups ( Alpha - and Betaproteobacteria , Acidobacteria , and Actinobacteria ) and the genes encoding iron-sulfur protein α (ISPα) subunits of the toluene/biphenyl dioxygenases in soil and rhizosphere by screening gene libraries using temperature gradient gel electrophoresis. The results, based on the analysis of 415 clones grouped into 133 operational taxonomic units that were sequence analyzed (>128 kbp), show that the rhizospheric bacterial community which evolved from the native soil community during the development of the root system was distinct from the soil community for all groups studied except for the Actinobacteria. Proteobacteria were enriched in the rhizosphere and dominated both in rhizosphere and soil. There was a higher than expected abundance of Betaproteobacteria in the native and in the planted PCB-polluted soil. The ISPα sequences retrieved indicate a high degree of catabolic and phylogenetic diversity. Many sequences clustered with biphenyl dioxygenase sequences from gram-negative bacteria. A distinct cluster that was composed of sequences from this study, some previously described environmental sequences, and a putative ISPα from Sphingomonas wittichii RW1 seems to contain greater diversity than the presently recognized toluene/biphenyl dioxygenase subfamily. Moreover, the rhizosphere selected for two ISPα sequences that accounted for almost 60% of the gene library and were very similar to sequences harbored by Pseudomonas species.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3