Identification and Characterization of the Physiological Gene Targets of the Essential Lytic Replicative Epstein-Barr Virus SM Protein

Author:

Thompson Jacob1,Verma Dinesh1,Li DaJiang1,Mosbruger Tim2,Swaminathan Sankar1

Affiliation:

1. Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA

2. Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA

Abstract

ABSTRACT Epstein-Barr virus (EBV) SM protein is an essential lytic cycle protein with multiple posttranscriptional mechanisms of action. SM binds RNA and increases accumulation of specific EBV transcripts. Previous studies using microarrays and PCR have shown that SM-null mutants fail to accumulate several lytic cycle mRNAs and proteins at wild-type levels. However, the complete effect of SM on the EBV transcriptome has been incompletely characterized. Here we precisely identify the effects of SM on all EBV transcripts by high-throughput RNA sequencing, quantitative PCR (qPCR), and Northern blotting. The effect of SM on EBV mRNAs was highly skewed and was most evident on 13 late genes, demonstrating why SM is essential for infectious EBV production. EBV DNA replication was also partially impaired in SM mutants, suggesting additional roles for SM in EBV DNA replication. While it has been suggested that SM specificity is based on recognition of either RNA sequence motifs or other sequence properties, no such unifying property of SM-responsive targets was discernible. The binding affinity of mRNAs for SM also did not correlate with SM responsiveness. These data suggest that while target RNA binding by SM may be required for its effect, specific activation by SM is due to differences in inherent properties of individual transcripts. We therefore propose a new model for the mechanism of action and specificity of SM and its homologs in other herpesviruses: that they bind many RNAs but only enhance accumulation of those that are intrinsically unstable and poorly expressed. IMPORTANCE This study examines the mechanism of action of EBV SM protein, which is essential for EBV replication and infectious virus production. Since SM protein is not similar to any cellular protein and has homologs in all other human herpesviruses, it has potential importance as a therapeutic target. Here we establish which EBV RNAs are most highly upregulated by SM, allowing us to understand why it is essential for EBV replication. By comparing and characterizing these RNA transcripts, we conclude that the mechanism of specific activity is unlikely to be based simply on preferential recognition of a target motif. Rather, SM binding to its target RNA may be necessary but not sufficient for enhancing accumulation of the RNA. Preferential effects of SM on its most responsive RNA targets may depend on other inherent characteristics of these specific mRNAs that require SM for efficient expression, such as RNA stability.

Funder

HHS | NIH | National Cancer Institute

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Reference53 articles.

1. Swaminathan S. 2005. Post-transcriptional gene regulation by EBV SM protein, p 631–650. In Robertson E (ed), Epstein-Barr virus. Caister Press, Poole, United Kingdom.

2. Swaminathan S, Kenney S. 2009. The Epstein-Barr virus lytic lifecycle. In Damania B, Pipas J (ed), DNA tumor viruses. Springer, Berlin, Germany.

3. Localization of the coding region for an Epstein-Barr virus early antigen and inducible expression of this 60-kilodalton nuclear protein in transfected fibroblast cell lines

4. Mapping of genes in BamHI fragment M of Epstein-Barr virus DNA that may determine the fate of viral infection

5. Epstein-Barr Virus mRNA Export Factor EB2 Is Essential for Production of Infectious Virus

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3