Methylation of DNA repeats of decreasing sizes in Ascobolus immersus

Author:

Goyon C1,Barry C1,Grégoire A1,Faugeron G1,Rossignol J L1

Affiliation:

1. Institut de Génétique et Microbiologie, Unité de Recherche Associée 1354, Centre National de la Recherche Scientifique, Université Paris-Sud, Orsay, France.

Abstract

In Ascobolus immersus, DNA duplications are subject to the process of methylation induced premeiotically (MIP), which methylates the cytosine residues within the repeats and results in reversible gene silencing. The triggering of MIP requires pairing of the repeats, and its detection requires maintenance of the resulting methylation. MIP of kilobase-size duplications occurs frequently and leads to the methylation of all C residues in the repeats, including those belonging to non-CpG sequences. Using duplications of decreasing sizes, we observed that tandem repeats never escaped MIP when larger than 630 bp and showed a sudden and drastic drop in MIP frequencies when their sizes decreased from 630 to 317 bp. This contrasted with the progressive decrease of MIP frequencies observed with ectopic repeats, in which apparently the search for homology influences the MIP triggering efficiency. The minimal size actually required for a repeat to undergo detectable MIP was found to be close to 300 bp. Genomic sequencing and Southern hybridization analyses using restriction enzymes sensitive to C methylation showed a loss of methylation at non-CpG sites in short DNA segments, methylation being restricted to a limited number of CpG dinucleotides. Our data suggest the existence of two distinct mechanisms underlying methylation maintenance, one responsible for methylation at CpG sites and the other responsible for methylation at non-CpG sites.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3