Thymidine 5′-Monophosphate-Requiring Mutants of Saccharomyces cerevisiae Are Deficient in Thymidylate Synthetase

Author:

Bisson Linda1,Thorner Jeremy1

Affiliation:

1. Department of Bacteriology and Immunology, University of California, Berkeley, California 94720

Abstract

Thymidylate synthetase activity was measured in crude extracts of the yeast Saccharomyces cerevisiae by a sensitive radiochemical assay. Spontaneous non-conditional mutants auxotrophic for thymidine 5′-monophosphate ( tmp1 ) lacked detectable thymidylate synthetase activity in cell-free extracts. In contrast, the parent strains ( tup1, -2 , or -4 ), which were permeable to thymidine 5′-monophosphate, contained levels of activity similar to those found in wild-type cells. Specific activity of thymidylate synthetase in crude extracts of normal cells or of cells carrying tup mutations was essentially unaffected by the ploidy or mating type of the cells, by the medium used for growth, by the respiratory capacity of the cells, by concentrations of exogenous thymidine 5′-monophosphate as high as 50 μg/ml, or by subsequent removal of thymidine 5′-monophosphate from the medium. Extracts of a strain bearing the temperature-sensitive cell division cycle mutation cdc21 lacked detectable thymidylate synthetase activity under all conditions tested. Its parent and another mutant ( cdc8 ), which arrests with the same terminal phenotype under restrictive conditions, had normal levels of the enzyme. Cells of a temperature-sensitive thymidine 5′-monophosphate auxotroph arrested with a morphology identical to the cdc21 strain at the nonpermissive temperature and contained demonstrably thermolabile thymidylate synthetase activity. Tetrad analysis and the properties of revertants showed that the thymidylate synthetase defects were a consequence of the same mutation causing, in the auxotrophs, a requirement for thymidine 5′-monophosphate and, in the conditional mutants, temperature sensitivity. Complementation tests indicated that tmp1 and cdc21 are the same locus. These results identify tmp1 as the structural gene for yeast thymidylate synthetase.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 88 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3