Mercury and Organomercurial Resistances Determined by Plasmids in Staphylococcus aureus

Author:

Weiss Alison A.1,Murphy Sandra D.1,Silver Simon1

Affiliation:

1. Division of Biological and Biomedical Sciences, Washington University, St. Louis, Missouri 63130

Abstract

Penicillinase plasmids of Staphylococcus aureus often contain genes conferring resistance to inorganic mercury (Hg 2+ ) and the organomercurial phenylmercury acetate. The mechanism of resistance was found to be the enzymatic hydrolysis of the organomercurial phenylmercury to benzene plus inorganic ionic mercury, which was then enzymatically reduced to metallic mercury (Hg 0 ). The Hg 0 was rapidly volatilized from the medium into the atmosphere. After the mercurial was degraded and the mercury was volatilized, the resistant cells were able to grow. These plasmids also conferred the ability to volatilize mercury from thimerosal, although the plasmid-bearing strains were equally as thimerosal sensitive as the S. aureus without plasmids. None of the plasmids conferred the ability to volatilize mercury from several other organomercurials, however: methylmercury, ethylmercury, p -hydroxymercuribenzoate, merbromin, and fluorescein mercuric acetate. (Organomercurial resistance-conferring plasmids of Escherichia coli and Pseudomonas aeruginosa that we have been studying confer the ability to degrade two or three of these organomercurials.) Although mercury was not volatilized from p -hydroxymercuribenzoate or fluorescein mercuric acetate, the plasmid-bearing strains were resistant to these organomercurials. The ability to volatilize mercury from Hg 2+ and phenylmercury was inducible. The range of inducers included Hg 2+ , phenylmercury, and several organomercurials that were not substrates for the degradation system. Mercury-sensitive mutants have been isolated from the parental plasmids pI258 and pII147. Thirty-one such mercury-sensitive strains fall into three classes: (i) mercury-sensitive strains totally devoid of the phenylmercury hydrolase and Hg 2+ reductase activities; (ii) mutants with normal hydrolase levels and no detectable reductase; and (iii) mutants with essentially normal hydrolase levels and low and variable (5 to 25%) levels of reductase activities. The mercury-sensitive strains were also sensitive to phenylmercury, including those with the potential for hydrolase activity.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 131 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3