A rumen virosphere with implications of contribution to fermentation and methane production, and endemism in cattle breeds and individuals

Author:

Sato Yoshiaki1ORCID,Takebe Hiroaki2,Tominaga Kento3ORCID,Yasuda Jumpei4,Kumagai Hajime5,Hirooka Hiroyuki5,Yoshida Takashi2ORCID

Affiliation:

1. Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi, Japan

2. Laboratory of Marine Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

3. Department of Integrated Biosciences, Graduate School of Frontier Sciences, the University of Tokyo, Chiba, Japan

4. Iwate Agricultural Research Center Animal Industry Research Institute, Iwate, Japan

5. Laboratory of Animal Husbandry Resources, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan

Abstract

ABSTRACT Viruses have a potential to modify the ruminal digestion via infection and cell lysis of prokaryotes, suggesting that viruses are related to animal performance and methane production. This study aimed to elucidate the genome-based diversity of rumen viral communities and the differences in virus structure between individuals and cattle breeds and to understand how viruses influence on the rumen. To these ends, a metagenomic sequencing of virus-like particles in the rumen of 22 Japanese cattle, including Japanese Black (JB, n = 8), Japanese Shorthorn ( n = 2), and Japanese Black sires × Holstein dams crossbred steers (F1, n = 12) was conducted. Additionally, the rumen viromes of six JB and six F1 that were fed identical diets and kept in a single barn were compared. A total of 8,232 non-redundant viral genomes (≥5-kb length and ≥50% completeness), including 982 complete genomes, were constructed, and rumen virome exhibited lysogenic signatures. Furthermore, putative hosts of 1,223 viral genomes were predicted using tRNA and clustered regularly interspaced short palindromic repeat (CRISPR)-spacer matching. The genomes included 1 and 10 putative novel complete genomes associated with Fibrobacter and Ruminococcus , respectively , which are the main rumen cellulose-degrading bacteria. Additionally, the hosts of 22 viral genomes, including 2 complete genomes, were predicted as methanogens, such as Methanobrevibacter and Methanomethylophilus . Most rumen viruses were highly rumen and individual specific and related to rumen-specific prokaryotes. Furthermore, the rumen viral community structure was significantly different between JB and F1 steers, indicating that cattle breed is one of the factors influencing the rumen virome composition. IMPORTANCE Here, we investigated the individual and breed differences of the rumen viral community in Japanese cattle. In the process, we reconstructed putative novel complete viral genomes related to rumen fiber-degrading bacteria and methanogen. The finding strongly suggests that rumen viruses contribute to cellulose and hemicellulose digestion and methanogenesis. Notably, this study also found that rumen viruses are highly rumen and individual specific, suggesting that rumen viruses may not be transmitted through environmental exposure. More importantly, we revealed differences of viral communities between JB and F1 cattle, indicating that cattle breed is a factor that influences the establishment of rumen virome. These results suggest the possibility of rumen virus transmission from mother to offspring and its potential to influence beef production traits. These rumen viral genomes and findings provide new insights into the characterizations of the rumen viruses.

Funder

Kieikai Research Foundation

Japan Society for the Promotion of Science

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3