Formation and Excretion of Acetylmaltose After Accumulation of Maltose in Escherichia coli

Author:

Boos Winfried1,Ferenci Thomas2,Shuman Howard A.3

Affiliation:

1. Department of Biology, University of Konstanz, D-7750 Konstanz, West Germany

2. Department of Microbiology, University of Sydney, Sydney, N.S.W. 2006, Australia

3. The Biological Laboratories, Harvard University, Boston, Massachusetts 02138

Abstract

malB + malQ strains accumulate maltose via the maltose-binding-protein-dependent transport system but are unable to metabolize it. Nevertheless, some of the maltose is modified after entering the cell. This newly formed compound exhibited a higher R f value than did maltose upon thin-layer and paper chromatography with the usual sugar-separating solvents. Treatment of this compound with acid and alkali reformed maltose. The identity of this compound with acetylmaltose was derived from mass spectrometry. Nuclear magnetic resonance spectra of the compound confirmed the presence of the acetyl group but did not allow its precise location on the maltose moiety. However, linkage to the 1-position of maltose could be excluded. Analysis of the mass spectra indicated that the nonreducing end of maltose was acetylated. Other substrates of the maltose transport system, such as maltotetraose, maltopentaose, and maltohexaose, were also modified after accumulation into the cell. Several products were formed; the heterogeneity of these products was probably caused by different degrees of acetylation. The enzymatic activity responsible for maltose and maltodextrin acetylation is unknown. However, it is clear that the lacA -dependent thiogalactoside transacetylase was not necessary for the acetylation of maltose. Strains that accumulate maltose via a bypass of the normal malB -dependent transport system also acetylated maltose even in the absence of any malB gene products. Thus, the acetylating activity was not connected to the malB system. Acetylmaltose as well as acetylated maltodextrins was excreted into the medium. Acetylmaltose is not a substrate of the maltose transport system. Thus, maltose acetylation may be an effective detoxification mechanism.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3