Partitioning of the Linear Chromosome during Sporulation of Streptomyces coelicolor A3(2) Involves an oriC -Linked parAB Locus

Author:

Kim Hyun-Jin1,Calcutt Michael J.2,Schmidt Francis J.3,Chater Keith F.1

Affiliation:

1. John Innes Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom,1 and

2. Department of Molecular Microbiology and Immunology, University of Missouri—Columbia and the Cancer Research Center,2 and

3. Department of Biochemistry, University of Missouri—Columbia,3Columbia, Missouri

Abstract

ABSTRACT Candidate partitioning genes ( parA and parB ) for the linear chromosome of Streptomyces coelicolor were identified by DNA sequencing in a series of seven genes located between rnpA and trxA near the chromosomal replication origin. The most likely translation start point of parB overlapped the parA stop codon, suggestive of coregulation, and transcription analysis suggested that the two genes formed an operon. Deletion of part of parB had no effect on the growth or appearance of colonies but caused a deficiency in DNA partitioning during the multiple septation events involved in converting aerial hyphae into long chains of spores. At least 13% of spore compartments failed to inherit the normal DNA allocation. The same phenotype was obtained with a deletion removing a segment of DNA from both parA and parB . Reinforcing the idea of a special role for the par locus during sporulation, the stronger of two parAB promoters was greatly upregulated at about the time when sporulation septation was maximal in colonies. Three copies of a 14-bp inverted repeat (GTTTCACGTGAAAC) were found in or near the parAB genes, and at least 12 more identical copies were identified within 100 kb of oriC from the growing genome sequence database. Only one perfect copy of the 14-bp sequence was present in approximately 5 Mb of sequence available from the rest of the genome. The 14-bp sequence was similar to sequences identified as binding sites for Spo0J, a ParB homologue from Bacillus subtilis believed to be important for DNA partitioning (D. C.-H. Lin and A. D. Grossman, Cell 92:675–685, 1998). One of these sites encompassed the transcription start point of the stronger parA promoter.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3