Fate of Minus-Strand Templates and Replication Complexes Produced by a P23-Cleavage-Defective Mutant of Sindbis Virus

Author:

Mai Junbo1,Sawicki Stanley G.1,Sawicki Dorothea L.1

Affiliation:

1. Department of Medical Microbiology and Immunology, University of Toledo College of Medicine, Toledo, Ohio 43614

Abstract

ABSTRACT SIN2V is an engineered mutant Sindbis virus (SIN) that is unable to process the P23 cleavage site in polyproteins P123 and P1234 that are translated from the genome after its entry into cells. Unlike wild-type (wt) SIN, it caused minus strands to be made continuously and replication-transcription complex (RTC) activity to be unstable (R. Gorchakov, E. Frolova, S. Sawicki, S. Atasheva, D. Sawicki, and I. Frolov, J. Virol. 82: 6218-6231, 2008). We examined further the effects of P23 on SIN RNA replication and RTC activity. Continuous minus-strand synthesis by SIN2V produced 250% of wt levels of minus strands but accumulated only 110% of wt levels (0.39 pg, or 2.7 × 10 4 molecules of double-stranded RNA per cell). Because SIN2V-infected cells accumulated only 40% of the minus strands that were made, cells must possess some process to limit RTC accumulation. The loss of activity by SIN2V RTC after translation was inhibited was stochastic and not due to their inherent instability, based on finding that activity was lost without the degradation of the minus-strand templates. In addition to their normal functions, P23 RTCs exhibited the novel phenotype of being unable to switch from making less to making more genomes than subgenomic 26S mRNA at late times during infections. Our results lend credence to the hypothesis that nsP2 (and possibly nsP3) possesses functions other than those needed solely for RTC activity and that it may also act with the host to regulate minus-strand synthesis and the stability of the RTC.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3