Independent changes in type I and type II receptors for transforming growth factor beta induced by bone morphogenetic protein 2 parallel expression of the osteoblast phenotype.

Author:

Centrella M,Casinghino S,Kim J,Pham T,Rosen V,Wozney J,McCarthy T L

Abstract

Transforming growth factor beta (TGF-beta), a potent regulator of bone formation, has bifunctional effects on osteoblast replication and biochemical activity that appear differentiation dependent. We now show that cell surface binding sites for TGF-beta vary markedly among fibroblasts, bone-derived cells, and highly differentiated osteosarcoma cultures from fetal rats. Expression of betaglycan and type II receptors decline relative to type I receptor expression in parallel with an increase in osteoblast-like activity, predicting that the ratio among various TGF-beta binding sites could influence how its signals are perceived. Bone morphogenetic protein 2 (BMP-2), which induces osteoblast function, does not alter TGF-beta binding or biochemical activity in fibroblasts and has only small effects in less differentiated bone cells. In contrast, BMP-2 rapidly reduces TGF-beta binding to betaglycan and type II receptors in osteoblast-enriched primary cell cultures and increases its relative binding to type I receptors in these cells and in ROS 17/2.8 cultures. Pretreatment with BMP-2 diminishes TGF-beta-induced DNA synthesis in osteoblast-enriched cultures but synergistically enhances its stimulatory effects on either collagen synthesis or alkaline phosphatase activity, depending on the present state of bone cell differentiation. Therefore, BMP-2 shifts the TGF-beta binding profile on bone cells in ways that are consistent with progressive expression of osteoblast phenotype, and these changes distinguish the biochemical effects mediated by each receptor. Our observations indicate specific stepwise actions by TGF-beta family members during osteoblast differentiation, developing in part from changes imprinted by BMP-2 on TGF-beta receptor stoichiometry.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 106 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3