Synaptic and epidermal accumulations of human acetylcholinesterase are encoded by alternative 3'-terminal exons

Author:

Seidman S1,Sternfeld M1,Ben Aziz-Aloya R1,Timberg R1,Kaufer-Nachum D1,Soreq H1

Affiliation:

1. Department of Biological Chemistry, Hebrew University of Jerusalem, Israel.

Abstract

Tissue-specific heterogeneity among mammalian acetylcholinesterases (AChE) has been associated with 3' alternative splicing of the primary AChE gene transcript. We have previously demonstrated that human AChE DNA encoding the brain and muscle AChE form and bearing the 3' exon E6 (ACHE-E6) induces accumulation of catalytically active AChE in myotomes and neuromuscular junctions (NMJs) of 2- and 3-day-old Xenopus embryos. Here, we explore the possibility that the 3'-terminal exons of two alternative human AChE cDNA constructs include evolutionarily conserved tissue-recognizable elements. To this end, DNAs encoding alternative human AChE mRNAs were microinjected into cleaving embryos of Xenopus laevis. In contrast to the myotomal expression demonstrated by ACHE-E6, DNA carrying intron 14 and alternative exon E5 (ACHE-I4/E5) promoted punctuated staining of epidermal cells and secretion of AChE into the external medium. Moreover, ACHE-E6-injected embryos displayed enhanced NMJ development, whereas ACHE-I4/E5-derived enzyme was conspicuously absent from muscles and NMJs and its expression in embryos had no apparent effect on NMJ development. In addition, cell-associated AChE from embryos injected with ACHE-I4/E5 DNA was biochemically distinct from that encoded by the muscle-expressible ACHE-E6, displaying higher electrophoretic mobility and greater solubility in low-salt buffer. These findings suggest that alternative 3'-terminal exons dictate tissue-specific accumulation and a particular biological role(s) of AChE, associate the 3' exon E6 with NMJ development, and indicate the existence of a putative secretory AChE form derived from the alternative I4/E5 AChE mRNA.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference36 articles.

1. Expression of a human acetylcholinesterase promoter-reporter construct in developing neuromuscular junctions of Xenopus embryos;Ben Aziz-Aloya R.;Proc. Natl. Acad. Sci. USA,1993

2. Fine ultrastructural changes in the differentiating epidermis of Xenopus laevis embryos;Billett F. S.;J. Anat.,1971

3. Sequence-specific endonucleolytic cleavage and protection of mRNA in Xenopus and Drosophila;Brown B. D.;Genes Dev.,1993

4. Compartmentalized transcription of acetylcholine receptor genes during motor endplate epigenesis;Changeux J. P.;New Biol.,1991

5. H and T subunits of acetylcholinesterase from Torpedo, expressed in COS cells, generate all types of molecular forms;Duval N.;J. Cell. Biol.,1992

Cited by 56 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3