Guide RNA-mRNA chimeras, which are potential RNA editing intermediates, are formed by endonuclease and RNA ligase in a trypanosome mitochondrial extract

Author:

Rusché L N1,Piller K J1,Sollner-Webb B1

Affiliation:

1. Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.

Abstract

RNA editing in kinetoplast mitochondrial transcripts involves the insertion and/or deletion of uridine residues and is directed by guide RNAs (gRNAs). It is thought to occur through a chimeric intermediate in which the 3' oligo(U) tail of the gRNA is covalently joined to the 3' portion of the mRNA at the site being edited. Chimeras have been proposed to be formed by a transesterification reaction but could also be formed by the known mitochondrial site-specific nuclease and RNA ligase. To distinguish between these models, we studied chimera formation in vitro directed by a trypanosome mitochondrial extract. This reaction was found to occur in two steps. First, the mRNA is cleaved in the 3' portion of the editing domain, and then the 3' fragment derived from this cleavage is ligated to the gRNA. The isolated mRNA 3' cleavage product is a more efficient substrate for chimera formation than is the intact mRNA, inconsistent with a transesterification mechanism but supporting a nuclease-ligase mechanism. Also, when normal mRNA cleavage is inhibited by the presence of a phosphorothioate, normal chimera formation no longer occurs. Rather, this phosphorothioate induces both cleavage and chimera formation at a novel site within the editing domain. Finally, levels of chimera-forming activity correlate with levels of mitochondrial RNA ligase activity when reactions are conducted under conditions which inhibit the ligase, including the lack of ATP containing a cleavable alpha-beta bond. These data show that chimera formation in the mitochondrial extract occurs by a nuclease-ligase mechanism rather than by transesterification.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Reference45 articles.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3