Increased Resistance to Staphylococcus aureus Endophthalmitis in BALB/c Mice: Fas Ligand Is Required for Resolution of Inflammation but Not for Bacterial Clearance

Author:

Sugi Norito1,Whiston Emily A.1,Ksander Bruce R.1,Gregory Meredith S.1

Affiliation:

1. The Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA

Abstract

ABSTRACT FasL was recently shown be required for bacterial clearance in C57BL/6 mice that express the FasL.1 allotype. The FasL.2 allotype is expressed in BALB/c mice and exhibits increased binding affinity to and increased cytotoxic activity against Fas + target cells. Therefore, we hypothesized that BALB/c mice would be more resistant to Staphylococcus aureus -induced endophthalmitis. To test this hypothesis, C57BL/6, BALB/c, and BALB( gld ) mice received intravitreal injections of 2,500 CFU of S. aureus (RN6390). Clinical examinations, electroretinography (ERG), histology, and bacterial quantification were performed at 24, 48, 72, and 96 h postinjection. The myeloperoxidase (MPO) assay was used to quantitate neutrophil infiltration. At 96 h postinfection, 86% of C57BL/6 mice presented with complete destruction of the eye, compared to only 29% of BALB/c mice with complete destruction. To our surprise, in the absence of Fas ligand, BALB( gld ) mice showed no difference in bacterial clearance compared to BALB/c mice. However, histology and ERG analysis revealed increased retinal damage and significant loss of retinal function. MPO analysis revealed equal numbers of neutrophils in BALB( gld ) and BALB/c mice at 24 h postinfection. However, at 48 h, the neutrophil numbers remained significantly elevated in BALB( gld ) mice, correlating with the increased retinal damage observed in BALB( gld ) mice. We conclude that the increased resistance to S. aureus induced endophthalmitis in BALB/c mice is not dependent upon the FasL. However, in contrast to C57BL/6 mice, FasL is required for resolution of inflammation and protecting host tissue from nonspecific damage in BALB/c mice.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3