Extension of the transcriptional and translational map of the left end of the vaccinia virus genome to 21 kilobase pairs

Author:

Cooper J A,Wittek R,Moss B

Abstract

Physical, transcriptional, and translational maps of an EcoRI fragment located between 15,800 and 20,600 base pairs from the left end of the vaccinia virus genome were prepared. Major polypeptides with molecular weights of 14,000 (14K polypeptide), 32,000 and 38,000 were synthesized in a reticulocyte cell-free system programmed with immediate early RNA made in the presence of cycloheximide and selected by hybridization to lambda recombinant DNA containing the EcoRI fragment. With early RNA made in the presence of cytosine arabinoside, an inhibitor of DNA replication, the polypeptide pattern was similar except for quantitative differences in which less 38K polypeptide was detected as a translation product. With late RNA, isolated 6 h after infection without inhibitors, only traces of the early translation products were found and a new 40K polypeptide was detected. The size of the mRNA's for the 14K, 32K, and 38K polypeptides were determined to be approximately 760,880, and 1,150 nucleotides, respectively, by several independent procedures. Several large early RNAs not shown to code for any additional translation products were also detected. The size of the late message for the 40K polypeptide varied from 920 to 3,100 nucleotides. This heterogeneity appeared to be a general property of vaccinia virus late mRNA's. No evidence of RNA splicing was obtained by analysis of RNA-DNA hybrids after nuclease S1 treatment. Further analyses using separated recombinant DNA strands and restriction fragments indicated that all mRNA's were encoded by the leftward-reading DNA strand and at least two were overlapping. Since early and late mRNA's were encoded by the same DNA strand, the possibility of temporal regulation by transcriptional strand switching was eliminated. In conjunction with previous studies, a transcriptional map of the left 20,600 base pairs of the vaccinia virus genome was derived.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3