Indistinguishable nuclear factor binding to functional core sites of the T-cell receptor delta and murine leukemia virus enhancers.

Author:

Redondo J M,Pfohl J L,Hernandez-Munain C,Wang S,Speck N A,Krangel M S

Abstract

We have previously shown that the delta E3 site is an essential element for transcriptional activation by the human T-cell receptor (TCR) delta enhancer and identified two factors, NF-delta E3A and NF-delta E3C, that bound to overlapping core (TGTGGTTT) and E-box motifs within delta E3. In this study, we show that protein binding to the core motif is necessary but not sufficient for transcriptional activation by the delta E3 element. In contrast, protein binding to the E-box motif does not contribute significantly to enhancer activity. A similar core motif present within the enhancers of T-cell-tropic murine retroviruses has been shown to contribute to transcriptional activity of the viral long terminal repeat in T lymphocytes and to viral T-cell tropism. We therefore determined the relationship between the nuclear factors that bind to the TCR delta and Moloney murine leukemia virus core motifs. On the basis of electrophoretic mobility shift binding and competition studies, biochemical analysis of affinity-labeled DNA-binding proteins, and the binding of a purified core binding factor, the proteins that bound to the TCR delta core site were indistinguishable from those that bound to the murine leukemia virus core site. These data argue that DNA-binding proteins that interact with the core site of murine leukemia virus long terminal repeats and contribute to viral T-cell tropism also play an essential role in the T-cell-specific expression of cellular genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 103 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ClinGen Myeloid Malignancy Variant Curation Expert Panel recommendations for germline RUNX1 variants;Blood Advances;2019-10-16

2. Targeting cell cycle regulators in hematologic malignancies;Frontiers in Cell and Developmental Biology;2015-04-09

3. Chromatin Dynamics and the Development of the TCRα and TCRδ Repertoires;Advances in Immunology;2015

4. Epigenetic Control of T-Cell Receptor Locus Rearrangements in Normal and Aberrant Conditions;Transcriptional and Epigenetic Mechanisms Regulating Normal and Aberrant Blood Cell Development;2014

5. Transcription factor RUNX1;Molecular Biology;2012-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3