Cloning of a negative transcription factor that binds to the upstream conserved region of Moloney murine leukemia virus.

Author:

Flanagan J R,Becker K G,Ennist D L,Gleason S L,Driggers P H,Levi B Z,Appella E,Ozato K

Abstract

The long terminal repeat of Moloney murine leukemia virus (MuLV) contains the upstream conserved region (UCR). The UCR core sequence, CGCCATTTT, binds a ubiquitous nuclear factor and mediates negative regulation of MuLV promoter activity. We have isolated murine cDNA clones encoding a protein, referred to as UCRBP, that binds specifically to the UCR core sequence. Gel mobility shift assays demonstrate that the UCRBP fusion protein expressed in bacteria binds the UCR core with specificity identical to that of the UCR-binding factor in the nucleus of murine and human cells. Analysis of full-length UCRBP cDNA reveals that it has a putative zinc finger domain composed of four C2H2 zinc fingers of the GLI subgroup and an N-terminal region containing alternating charges, including a stretch of 12 histidine residues. The 2.4-kb UCRBP message is expressed in all cell lines examined (teratocarcinoma, B- and T-cell, macrophage, fibroblast, and myocyte), consistent with the ubiquitous expression of the UCR-binding factor. Transient transfection of an expressible UCRBP cDNA into fibroblasts results in down-regulation of MuLV promoter activity, in agreement with previous functional analysis of the UCR. Recently three groups have independently isolated human and mouse UCRBP. These studies show that UCRBP binds to various target motifs that are distinct from the UCR motif: the adeno-associated virus P5 promoter and elements in the immunoglobulin light- and heavy-chain genes, as well as elements in ribosomal protein genes. These results indicate that UCRBP has unusually diverse DNA-binding specificity and as such is likely to regulate expression of many different genes.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 245 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3