Vitamin D Deficiency Reduces the Immune Response, Phagocytosis Rate, and Intracellular Killing Rate of Microglial Cells

Author:

Djukic Marija12,Onken Marie Luise2,Schütze Sandra2,Redlich Sandra2,Götz Alexander2,Hanisch Uwe-Karsten2,Bertsch Thomas3,Ribes Sandra2,Hanenberg Andrea3,Schneider Simon4,Bollheimer Cornelius56,Sieber Cornel56,Nau Roland12

Affiliation:

1. Department of Geriatrics, Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany

2. Department of Neuropathology, University Medical School Göttingen, Göttingen, Germany

3. Institute of Clinical Chemistry and Laboratory Medicine, Klinikum Nürnberg, Nürnberg, Germany

4. Department of Medical Statistics, University Medical School, Göttingen, Germany

5. Institute for Biomedicine of Aging (IBA), Friedrich-Alexander Universität Erlangen-Nürnberg, Nürnberg, Germany

6. Department of Internal Medicine and Geriatrics, Krankenhaus Barmherziger Brüder, Regensburg, Germany

Abstract

ABSTRACT Meningitis and meningoencephalitis caused by Escherichia coli are associated with high rates of mortality and neurological sequelae. A high prevalence of neurological disorders has been observed in geriatric populations at risk of hypovitaminosis D. Vitamin D has potent effects on human immunity, including induction of antimicrobial peptides (AMPs) and suppression of T-cell proliferation, but its influence on microglial cells is unknown. The purpose of the present study was to determine the effects of vitamin D deficiency on the phagocytosis rate, intracellular killing, and immune response of murine microglial cultures after stimulation with the Toll-like receptor (TLR) agonists tripalmitoyl- S -glyceryl-cysteine (TLR1/2), poly(I·C) (TLR3), lipopolysaccharide (TLR4), and CpG oligodeoxynucleotide (TLR9). Upon stimulation with high concentrations of TLR agonists, the release of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) was decreased in vitamin D-deficient compared to that in vitamin D-sufficient microglial cultures. Phagocytosis of E. coli K1 after stimulation of microglial cells with high concentrations of TLR3, -4, and -9 agonists and intracellular killing of E. coli K1 after stimulation with high concentrations of all TLR agonists were lower in vitamin D-deficient microglial cells than in the respective control cells. Our observations suggest that vitamin D deficiency may impair the resistance of the brain against bacterial infections.

Publisher

American Society for Microbiology

Subject

Infectious Diseases,Immunology,Microbiology,Parasitology

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3