Site of Human Rhinovirus RNA Uncoating Revealed by Fluorescent In Situ Hybridization

Author:

Brabec-Zaruba Marianne1,Pfanzagl Beatrix1,Blaas Dieter2,Fuchs Renate1

Affiliation:

1. Department of Pathophysiology, Center for Physiology, Pathophysiology and Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria

2. Max F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University of Vienna, Dr. Bohr Gasse 9/3, A-1030 Vienna, Austria

Abstract

ABSTRACT By using fluorescent in situ hybridization (FISH), we visualized viral RNA of human rhinovirus type 2 (HRV2) during its entry into HeLa cells. RNA uncoating of HRV2 is entirely dependent on low endosomal pH (≤5.6). When internalized into cells treated with bafilomycin, which results in neutralization of the endosomal pH, no FISH signal was recorded, whereas in the absence of the drug, fluorescent dots were seen. Therefore, FISH detects the genomic viral RNA only upon its release from the capsid. Free viral RNA was first seen at 10 min postinfection (p.i.) in the perinuclear area of the cell, which is indicative of RNA release in/from late endosomal compartments. Pulse-chase experiments and observation of HRV2 RNA and capsid proteins via microscopy, Western blotting, and reverse transcription-PCR revealed that the RNA signal persisted whereas the protein signal disappeared. This demonstrates transport of capsids to lysosomes and degradation. In contrast, viral RNA that had already been transferred into the cytoplasm escaped lysosomal breakdown as indicated by a persistent FISH signal. Taken together, our results demonstrate by direct means RNA arrival in the cytosol within 10 min p.i. Based on persistence of the FISH signal and productive infection in the presence of the microtubule-depolymerizing drug nocodazole, we localized this process to endosomal carrier vesicles/late endosomes.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3