A Naturally Occurring Splice Variant of CXCL12/Stromal Cell-Derived Factor 1 Is a Potent Human Immunodeficiency Virus Type 1 Inhibitor with Weak Chemotaxis and Cell Survival Activities

Author:

Altenburg Jeffrey D.1,Broxmeyer Hal E.1,Jin Qingwen1,Cooper Scott1,Basu Sunanda1,Alkhatib Ghalib1

Affiliation:

1. Department of Microbiology and Immunology and the Walther Oncology Center, Indiana University School of Medicine, 635 Barnhill Drive, Room 420, Indianapolis, Indiana 46202, and the Walther Cancer Institute, Indianapolis, Indiana 46208

Abstract

ABSTRACT CXCL12/stromal cell-derived factor 1 is a member of the CXC family of chemokines that plays an important role in hematopoiesis and signals through CXCR4 and CXCR7. Two splice variants of human CXCL12 (CXCL12α and CXCL12β) induce chemotaxis of CXCR4 + cells and inhibit X4 infection. Recent studies described four other novel splice variants of human CXCL12; however, their antiviral activities were not investigated. We constructed and expressed all of the CXCL12 splice variants in Escherichia coli . Recombinant proteins were purified through a His affinity column, and their biological properties were analyzed. All six CXCL12 variants induced chemotaxis of CXCR4 + and CXCR7 + cell lines. Enhancement of survival and replating capacity of human hematopoietic progenitor cells were observed with CXCL12α, CXCL12β, and CXCL12ε but not with the other variants. CXCL12γ showed the greatest antiviral activity in X4 inhibition assays and the weakest chemotaxis activity through CXCR4. The order of potency in X4 inhibition assays was as follows: CXCL12γ > CXCL12β > CXCL12α > CXCL12θ > CXCL12ε > CXCL12δ. The order of anti-human immunodeficiency virus (HIV) activity was associated with the number of BBXB motifs present in each variant; the most potent inhibitor was CXCL12γ, with five BBXB domains. The results suggest that the different C termini of CXCL12 variants may contain important molecular determinants for the observed differences in antiviral effects and other biological functions. These studies implicate CXCL12γ as a potent HIV-1 entry inhibitor with significantly reduced chemotaxis activity and small or absent effects on progenitor cell survival or replating capacity, providing important insight into the structure-function relationships of CXCL12.

Publisher

American Society for Microbiology

Subject

Virology,Insect Science,Immunology,Microbiology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3