The COOH-terminal domain of the Rap1A (Krev-1) protein is isoprenylated and supports transformation by an H-Ras:Rap1A chimeric protein

Author:

Buss J E1,Quilliam L A1,Kato K1,Casey P J1,Solski P A1,Wong G1,Clark R1,McCormick F1,Bokoch G M1,Der C J1

Affiliation:

1. La Jolla Cancer Research Foundation, California 92037.

Abstract

Although the Rap1A protein resembles the oncogenic Ras proteins both structurally and biochemically, Rap1A exhibits no oncogenic properties. Rather, overexpression of Rap1A can reverse Ras-induced transformation of NIH 3T3 cells. Because the greatest divergence in amino acid sequence between Ras and Rap1A occurs at the COOH terminus, the role of this domain in the opposing biological activities of these proteins was examined. COOH-terminal processing and membrane association of Rap1A were studied by constructing and expressing a chimeric protein (composed of residues 1 to 110 of an H-Ras activated by a Leu-61 mutation attached to residues 111 to 184 of Rap1A) in NIH 3T3 cells and a full-length human Rap1A protein in a baculovirus-Sf9 insect cell system. Both the chimeric protein and the full-length protein were synthesized as a 23-kDa cytosolic precursor that rapidly bound to membranes and was converted into a 22-kDa form that incorporated label derived from [3H]mevalonate. The mature 22-kDa form also contained a COOH-terminal methyl group. Full-length Rap1A, expressed in insect cells, was modified by a C20 (geranylgeranyl) isoprenoid. In contrast, H-Ras, expressed in either Sf9 insect or NIH 3T3 mouse cells contained a C15 (farnesyl) group. This suggests that the Rap1A COOH terminus is modified by a prenyl transferase that is distinct from the farnesyl transferase that modifies Ras proteins. Nevertheless, in NIH 3T3 cells the chimeric Ras:Rap1A protein retained the transforming activity conferred by the NH2-terminal Ras61L domain. This demonstrates that the modifications and localization signals of the COOH terminus of Rap1A can support the interactions between H-Ras and membranes that are required for transformation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3