Capsids and Genomes of Jumbo-Sized Bacteriophages Reveal the Evolutionary Reach of the HK97 Fold

Author:

Hua Jianfei12,Huet Alexis1,Lopez Carlos A.1,Toropova Katerina1,Pope Welkin H.2ORCID,Duda Robert L.2,Hendrix Roger W.2,Conway James F.1ORCID

Affiliation:

1. Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA

2. Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA

Abstract

ABSTRACT Large icosahedral viruses that infect bacteria represent an extreme of the coevolution of capsids and the genomes they accommodate. One subset of these large viruses is the jumbophages, tailed phages with double-stranded DNA genomes of at least 200,000 bp. We explored the mechanism leading to increased capsid and genome sizes by characterizing structures of several jumbophage capsids and the DNA packaged within them. Capsid structures determined for six jumbophages were consistent with the canonical phage HK97 fold, and three had capsid geometries with novel triangulation numbers (T=25, T=28, and T=52). Packaged DNA (chromosome) sizes were larger than the genome sizes, indicating that all jumbophages use a head-full DNA packaging mechanism. For two phages (PAU and G), the sizes appeared very much larger than their genome length. We used two-dimensional DNA gel electrophoresis to show that these two DNAs migrated abnormally due to base modifications and to allow us to calculate their actual chromosome sizes. Our results support a ratchet model of capsid and genome coevolution whereby mutations lead to increased capsid volume and allow the acquisition of additional genes. Once the added genes and larger capsid are established, mutations that restore the smaller size are disfavored. IMPORTANCE A large family of viruses share the same fold of the capsid protein as bacteriophage HK97, a virus that infects bacteria. Members of this family use different numbers of the capsid protein to build capsids of different sizes. Here, we examined the structures of extremely large capsids and measured their DNA content relative to the sequenced genome lengths, aiming to understand the process that increases size. We concluded that mutational changes leading to larger capsids become locked in by subsequent changes to the genome organization.

Funder

Commonwealth of Pennsylvania

HHS | National Institutes of Health

National Science Foundation

Publisher

American Society for Microbiology

Subject

Virology,Microbiology

Cited by 63 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3