A Family of LIM-Only Transcriptional Coactivators: Tissue-Specific Expression and Selective Activation of CREB and CREM

Author:

Fimia Gian Maria1,De Cesare Dario1,Sassone-Corsi Paolo1

Affiliation:

1. Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS-INSERM, Université Louis Pasteur, 67404 Illkirch-Strasbourg, France

Abstract

ABSTRACT Transcription factors of the CREB family control the expression of a large number of genes in response to various signaling pathways. Regulation mediated by members of the CREB family has been linked to various physiological functions. Classically, activation by CREB is known to occur upon phosphorylation at an essential regulatory site (Ser133 in CREB) and the subsequent interaction with the ubiquitous coactivator CREB-binding protein (CBP). However, the mechanism by which selectivity is achieved in the identification of target genes, as well as the routes adopted to ensure tissue-specific activation, remains unrecognized. We have recently described the first tissue-specific coactivator of CREB family transcription factors, ACT (activator of CREM in testis). ACT is a LIM-only protein which associates with CREM in male germ cells and provides an activation function which is independent of phosphorylation and CBP. Here we characterize a family of LIM-only proteins which share common structural organization with ACT. These are referred to as four-and-a-half-LIM-domain (FHL) proteins and display tissue-specific and developmentally regulated expression. FHL proteins display different degrees of intrinsic activation potential. They provide powerful activation function to both CREB and CREM when coexpressed either in yeast or in mammalian cells, specific combinations eliciting selective activation. Deletion analysis of the ACT protein shows that the activation function depends on specific arrangements of the LIM domains, which are essential for both transactivation and interaction properties. This study uncovers the existence of a family of tissue-specific coactivators that operate through novel, CBP-independent routes to elicit transcriptional activation by CREB and CREM. The future identification of additional partners of FHL proteins is likely to reveal unappreciated aspects of tissue-specific transcriptional regulation.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3