Elevated Levels of Hepatocyte Nuclear Factor 3β in Mouse Hepatocytes Influence Expression of Genes Involved in Bile Acid and Glucose Homeostasis

Author:

Rausa Francisco M.1,Tan Yongjun1,Zhou Heping1,Yoo Kyung W.1,Stolz Donna Beer2,Watkins Simon C.2,Franks Roberta R.1,Unterman Terry G.13,Costa Robert H.1

Affiliation:

1. Departments of Molecular Genetics, Medicine, Physiology, and Biophysics, College of Medicine, University of Illinois at Chicago,1 and

2. Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 152612

3. VA West Side Medical Center,3 Chicago, Illinois 60607-7170, and

Abstract

ABSTRACT The winged helix transcription factor, hepatocyte nuclear factor-3β (HNF-3β), mediates the hepatocyte-specific transcription of numerous genes important for liver function. However, the in vivo role of HNF-3β in regulating these genes remains unknown because homozygous null HNF3 β mouse embryos die in utero prior to liver formation. In order to examine the regulatory function of HNF-3β, we created transgenic mice in which the −3-kb transthyretin promoter functions to increase hepatocyte expression of the rat HNF-3β protein. Postnatal transgenic mice exhibit growth retardation, depletion of hepatocyte glycogen storage, and elevated levels of bile acids in serum. The retarded growth phenotype is likely due to a 20-fold increase in hepatic expression of insulin-like growth factor binding protein 1 (IGFBP-1), which results in elevated levels in serum of IGFBP-1 and limits the biological availability of IGFs required for postnatal growth. The defects in glycogen storage and serum bile acids coincide with diminished postnatal expression of hepatocyte genes involved in gluconeogenesis (phosphoenolpyruvate carboxykinase and glycogen synthase) and sinusoidal bile acid uptake (Ntcp), respectively. These changes in gene transcription may result from the disruptive effect of HNF-3β on the hepatic expression of the endogenous mouse HNF-3α,-3β, -3γ, and -6 transcription factors. Furthermore, adult transgenic livers lack expression of the canalicular phospholipid transporter, mdr2, which is consistent with ultrastructure evidence of damage to transgenic hepatocytes and bile canaliculi. These transgenic studies represent the first in vivo demonstration that the HNF-3β transcriptional network regulates expression of hepatocyte-specific genes required for bile acid and glucose homeostasis, as well as postnatal growth.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3