A common trans-acting factor is involved in transcriptional regulation of neurotransmitter genes by cyclic AMP.

Author:

Hyman S E,Comb M,Lin Y S,Pearlberg J,Green M R,Goodman H M

Abstract

Activation of neurotransmitter receptors can regulate transcription in postsynaptic cells through the actions of second messengers. Trans-synaptic regulation of transcription appears to be an important mechanism controlling the synthesis of molecules involved in neuronal signaling, especially neuropeptides. Proenkephalin, vasoactive intestinal polypeptide, and somatostatin have been shown to be transcriptionally regulated by the second messenger, cyclic AMP (cAMP), as has the catecholamine synthesizing enzyme tryosine hydroxylase. cAMP-inducible elements have been mapped within these genes, and trans-acting factors which bind to several such elements have been identified. With the discovery that individual neurons generally contain multiple transmitters within their synaptic terminals, it has become important to understand in detail the mechanisms by which the synthesis of transmitters can be coregulated. Here we compare the structure and function of the proenkephalin cAMP-inducible enhancer with the mapped cAMP-inducible elements of the vasoactive intestinal polypeptide, somatostatin, and tyrosine hydroxylase genes and a putative cAMP-inducible element in the proto-oncogene c-fos. We have previously shown that the proenkephalin enhancer is composed of two different elements, ENKCRE-1 and ENKCRE-2. We show here that one of these, ENKCRE-2, is structurally similar to elements found within the vasoactive intestinal polypeptide, somatostatin, and tyrosine hydroxylase genes and binds a trans-acting factor that is competed for both in cotransfection experiments (in vivo) and in DNase I footprint assays (in vitro) by these other elements. The c-fos element has similar structural requirements to confer transcriptional induction by cAMP but competes less strongly. Protein purified by affinity chromatography with the ENKCRE-2 sequence binds to each of these elements. A second element within the proenkephalin cAMP-inducible enhancer, ENKCRE-1, binds a factor that is not competed for by these other genes and is therefore distinct. This analysis suggests a potential mechanism of transcriptional coregulation of the neuronally expressed genes investigated in this study and also demonstrates that multiple factors are involved in transcriptional activation by cAMP.

Publisher

American Society for Microbiology

Subject

Cell Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3