Occurrence, Genetic Diversity, and Persistence of Enterococci in a Lake Superior Watershed

Author:

Ran Qinghong1,Badgley Brian D.1,Dillon Nicholas2,Dunny Gary M.2,Sadowsky Michael J.13

Affiliation:

1. Biotechnology Institute, University of Minnesota, St. Paul, Minnesota, USA

2. Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, USA

3. Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA

Abstract

ABSTRACT In 2012, the U.S. EPA suggested that coastal and Great Lakes states adopt enterococci as an alternative indicator for the monitoring of recreational water quality. Limited information, however, is available about the presence and persistence of enterococci in Lake Superior. In this study, the density, species composition, and persistence of enterococci in sand, sediment, water, and soil samples were examined at two sites in a Lake Superior watershed from May to September over a 2-year period. The genetic diversity of Enterococcus faecalis isolates collected from environmental samples was also studied by using the horizontal, fluorophore-enhanced repetitive PCR DNA fingerprinting technique. Results obtained by most-probable-number analyses indicated that enterococci were present in 149 (94%) of 159 samples and their densities were generally higher in the summer than in the other months examined. The Enterococcus species composition displayed spatial and temporal changes, with the dominant species being E. hirae , E. faecalis , E. faecium , E. mundtii , and E. casseliflavus . DNA fingerprint analyses indicated that the E. faecalis population in the watershed was genetically diverse and changed spatially and temporally. Moreover, some DNA fingerprints reoccurred over multiple sampling events. Taken together, these results suggest that some enterococci are able to persist and grow in the Lake Superior watershed, especially in soil, for a prolonged time after being introduced.

Publisher

American Society for Microbiology

Subject

Ecology,Applied Microbiology and Biotechnology,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3