Bacillus subtilis SalA (YbaL) Negatively Regulates Expression of scoC , Which Encodes the Repressor for the Alkaline Exoprotease Gene, aprE

Author:

Ogura Mitsuo1,Matsuzawa Atsushi1,Yoshikawa Hirofumi2,Tanaka Teruo1

Affiliation:

1. Department of Marine Science, School of Marine Science and Technology, Tokai University, Shizuoka 424-8610

2. Department of Biosciences, Tokyo University of Agriculture, Setagaya-Ku, Sakuraoka, Tokyo 156-8502, Japan

Abstract

ABSTRACT During the course of screening for exoprotease-deficient mutants among Bacillus subtilis gene disruptants, a strain showing such a phenotype was identified. The locus responsible for this phenotype was the previously unknown gene ybaL , which we renamed salA. The predicted gene product encoded by salA belongs to the Mrp family, which is widely conserved among archaea, prokaryotes, and eukaryotes. Disruption of salA resulted in a decrease in the expression of a lacZ fusion of the aprE gene encoding the major extracellular alkaline protease. The decrease was recovered by the cloned salA gene on a plasmid, demonstrating that the gene is involved in aprE expression. Determination of the cis -acting region of SalA on the upstream region of aprE , together with epistatic analyses with scoC , abrB , and spo0A mutations that also affect aprE expression, suggested that salA deficiency affects aprE-lacZ expression through the negative regulator ScoC. Northern and reverse transcription-PCR analyses revealed enhanced levels of scoC transcripts in the salA mutant cells in the transition and early stationary phases. Concomitant with these observations, larger amounts of the ScoC protein were detected in the mutant cells by Western analysis. From these results we conclude that SalA negatively regulates scoC expression. It was also found that the expression of a salA-lacZ fusion was increased by salA deficiency, suggesting that salA is autoregulated.

Publisher

American Society for Microbiology

Subject

Molecular Biology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3