Affiliation:
1. Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
Abstract
ABSTRACT
Most proteases are synthesized as inactive precursors which are processed by proteolytic cleavage into a mature active form, allowing regulation of their proteolytic activity. The activation of the glutamic-acid-specific extracellular metalloprotease (Mpr) of
Bacillus subtilis
has been examined. Analysis of Mpr processing in defined protease-deficient mutants by activity assay and Western blotting revealed that the extracellular protease Bpr is required for Mpr processing. pro-Mpr remained a precursor form in
bpr
-deficient strains, and glutamic-acid-specific proteolytic activity conferred by Mpr was not activated in
bpr
-deficient strains. Further, purified pro-Mpr was processed to an active form by purified Bpr protease in vitro. We conclude that Mpr is activated by Bpr in vivo, and that heteroprocessing, rather than autoprocessing, is the major mechanism of Mpr processing in vivo. Exchange of glutamic acid for serine in the cleavage site of Mpr (S93E) allowed processing of Mpr into its mature form, regardless of the presence of other extracellular proteases, including Bpr. Thus, a single amino acid change is sufficient to convert the Mpr processing mechanism from heteroprocessing to autoprocessing.
Publisher
American Society for Microbiology
Subject
Molecular Biology,Microbiology
Reference43 articles.
1. Bolhuis, A., H. Tjalsma, K. Stephenson, C. R. Harwood, G. Venema, S. Bron, and J. M. van Dijl. 1999. Different mechanisms for thermal inactivation of Bacillus subtilis signal peptidase mutants. J. Biol. Chem.274:15865-15868.
2. Bruckner, R., O. Shoseyov, and R. H. Doi. 1990. Multiple active forms of a novel serine protease from Bacillus subtilis. Mol. Gen. Genet.221:486-490.
3. Corvey, C., T. Stein, S. Dusterhus, M. Karas, and K. Entian. 2003. Activation of subtilin precursors by Bacillus subtilis extracellular serine proteases subtilisin (AprE), WprA, and Vpr. Biochem. Biophys. Res. Commun.304:48-54.
4. Doi, R. H. 1983. Isolation of Bacillus subtilis chromosomal DNA, p. 162-163. In R. L. Rodrirez and R. C. Tait (ed.), Recombinant DNA techniques. Addison-Wesley Publishing Co., Inc., Reading, Mass.
5. Drapeau, G. R., Y. Boily, and J. Houmard. 1972. Purification and properties of an extracellular protease of Staphylococcus aureus. J. Biol. Chem.247:6720-6726.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献